Announced regime switch: Are business cycles getting synchronized?

Transition towards the unilateral peg

František Brázdik

Center for Economic Research and Graduate Education of Charles University

Czech National Bank¹

August 26, 2009

The views expressed here are my own and do not necessarily represent the views of the CNB 📑 🕟

Outline

- Introduction
- 2 Model
- 3 Welfare over the transition period
- 4 Impulse response functions
- **5** Correlation evolution

Presentation outline

- Introduction
- 2 Model
- Welfare over the transition period
- 4 Impulse response functions
- Correlation evolution

Motivation

- Czech Republic is considering monetary union entry
- Montenegro unilaterally adopted Euro
- Macroeconomic stability in small open economy environment: Collard & Dellas (2002)
 - variance of series
 - evolution of variance
- Currency peg regime can support macroeconomic stability:
 - Cuche-Curti et al. (2008): rigidity in the goods market
 - ▶ Dellas and Tavlas (2003): presence of nominal rigidities

Models of regime switch

Questions:

- How will the response to shocks of interest rates change over the transition period?
- What monetary regime is optimal for transition?
- Are business cycles getting synchronized over the transition period?

Goal:

- Modeling a monetary regime switch in DSGE model
 - ► Farmer, Waggoner and Zha (2007): Recent works rely on Markov switching processes
 - Introduce new theoretical framework for regime switch modeling

Presentation outline

- Introduction
- 2 Model
- Welfare over the transition period
- 4 Impulse response functions
- Correlation evolution

Model I

Justiniano and Preston (2004) framework:

- Two countries:
 - ▶ Home small economy
 - ★ Optimizing agents: households and firms
 - ► Foreign large economy (monetary union)
 - ★ Exogenous processes
- Domestic agents:
 - ► Households: habit formation
 - Firms: domestic producers, importers, and final good producer

Model II

- Model features:
 - No capital
 - All goods are tradable
 - Complete markets: Symmetric equilibrium
 - Nominal rigidities: Monopolistic competition
 - ★ Monopolistic competition: Intermediate good
 - ★ Inflation indexation of good prices
 - ★ Importers: Law of one price gap
 - ★ Final good aggregation: Dixit-Stiglitz form

Model III

- Domestic monetary policy rules:
 - Pre-transition:
 Targeting of inflation, output gap or change in nominal exchange rate
 - Transition: Policy rule with knowledge of regime switch
 - Post-transition:
 Rule of offsetting foreseen changes in the nominal exchange rate

Monetary policy rules

Generalization of monetary regimes:

• Pre-transition regime (independent monetary policy):

$$i_t^I = \rho_i i_{t-1} + (1 - \rho_i)(\rho_\pi \pi_t^{\dot{CPI}} + \rho_y y_t + \rho_e \Delta e_t)$$

• where 0 \leq ho_i < 1, ho_π > 1, ho_y > 0 and ho_e \geq 0

Post-transition regime (stability of exchange rate):

$$i_t^U = \widehat{\rho_e} \sum_{j=t}^{\infty} \left(\frac{1}{2}\right)^{\overline{t}-j} \Delta E_t[e_j]$$

• where $\rho_e=2.0$

Transition regime:

$$i_t^T = \textit{regime}_t \; i_t^I + (1 - \textit{regime}_t) \, i_t^U, \, ext{where} \; \textit{regime}_t \in \{0, 1\}$$

Information buffer I

- Future information is added to the state space
- Agents foresee the future changes of monetary regime
- Regime indicator:

$$\begin{array}{lll} \textit{regime}_t & = & \textit{inf}_{t,1} \\ & \textit{inf}_{t,1} & = & \textit{inf}_{t-1,2} + \nu_{t,1} \\ & \textit{inf}_{t,2} & = & \textit{inf}_{t-1,3} + \nu_{t,2} \\ & & \vdots \\ & \textit{inf}_{t,N-1} & = & \textit{inf}_{t-1,N} + \nu_{t,N-1} \\ & \textit{inf}_{t,N} & = & \nu_{t,N}, \end{array} \tag{1}$$

• $inf_{t,i}$, $i \in 1, ..., N$ are new endogenous variables, $\nu_{t,i}$, $i \in 1, ..., N$ are information shocks in the period t.

Information buffer II

 Announcement is modeled as a series of information shocks realization

•

$$\nu_{k,i} = \begin{cases} 1, & i \leq T; \\ 0, & i > T, \end{cases}$$

- $\nu_{l,i} = 0$, $\forall i$ and in the all subsequent periods l, l > k
- \bullet $\nu_{l,i}$ is zero mean and zero variance random variable

Solution

Three models:

- Model of independent policy: linear
- Transition period model: quadratic
- Final period model: linear
- Solve model:
 - Easy for independent a final period model
 - ► Transition period: Second order approximation of the monetary policy rule
 - ▶ Dynare++: fast solver for large problems
- Estimate model of independent policy
 - Dynare: Bayesian estimation
- Oefine scenarios:
 - Evaluate information shocks
 - Simulate the linear model

Estimation results

- High value of the openness parameter: 0.35
- Monetary policy rule: high interest rate smoothing, inflation stability is almost 3 times more preferred than output stability; matches the policy rule as used in CNB's forecasting model
- Slightly more rigidity in domestic good sector than in imported good
- Inflation indexation: 0.56

Presentation outline

- Introduction
- 2 Model
- 3 Welfare over the transition period
- 4 Impulse response functions
- Correlation evolution

Transition period: Welfare evaluation I

What monetary regime is optimal for the transition? Assumptions:

- Pre-transition period: estimated regime
- Transition period: Optimal regime

Welfare evaluation:

Santacreu (2005):

$$L_t = au extsf{Var}(\pi_t) + (1- au) extsf{Var}(y_t) + rac{ au}{4} (\Delta i_t),$$

where $\tau \in <0,1>$

Loss function evaluation

Optimal function for the transition: ρ_i

Optimal function for the transition: ho_π

Optimal function for the transition: ho_y

Optimal function for the transition: ho_e

Presentation outline

- Introduction
- 2 Model
- 3 Welfare over the transition period
- Impulse response functions
- Correlation evolution

Irfs

How will the response to shocks of interest rates change over the transition period?

Compare responses:

- Examine the effect of the transition period length
- Examine the effects of choice of the transition period regime
 - Choice of weights in the monetary policy rule to reflect standard regimes

Irf (Transition length): Technology shock

Irf (Transition length): Preference shock

Presentation outline

- Introduction
- 2 Model
- Welfare over the transition period
- 4 Impulse response functions
- **5** Correlation evolution

Business cycles correlations

Are business cycles getting synchronized over the transition period?

- Exchange rate stabilization vs lost of monetary policy influence on inflation
- Interest rate gets more correlated with the changes in the exchange rate over the transition period

Correlation: Foreign inflation rate

Correlation: Foreign inflation rate

Correlation: Foreign interest rate

Correlation: Foreign output

Correlation: Domestic interest rate

Policy implications

- Influence of monetary policy on inflation and output
 - ► The inflation-interest rate correlation drops mainly in the initial and late phase of the transition.
 - Monetary policy gains contractionary power towards the end of the transition
 - ★ Increase in interest rate signals to depreciation under the post-transition regime
- Consistently with the experiment design the interest rate exchange rate correlation increases

Conclusion

Goals:

- Alternative approach to modeling of regime switch is presented
- Evolution of macroeconomic stability is evaluated
- Optimal policy for transition

Future research:

• Extended model: non-linear effects, announcement uncertainty

Moments comparison

	Data		Model	
Variable	Std. dev.	Corr.	Std. dev.	Corr.
Output growth	1.05	1.00	2.28	1.00
Nominal interest rate	1.38	-0.53	0.53	-0.35
CPI inflation	3.14	-0.12	3.34	-0.06
Change in nominal ex. rate	8.37	0.17	8.12	0.11
Foreign output gap	0.81	0.02	0.74	0.03
Foreign inflation	0.66	0.21	0.81	-0.02
Foreign nom. int. rate	0.65	-0.03	0.73	-0.02

