Macroeconomic stability Transition towards the unilateral peg

František. Brázdik frantisek brazdik@cnb.cz

Center for Economic Research and Graduate Education of Charles University

Czech National Bank¹

June 12, 2008

¹The views expressed on this site are my own and do not necessarily represent the views of the CNB.

Outline

Introduction

2 Model

3 Simulation results

Presentation outline

Introduction

2 Model

Simulation results

Motivation

- Czech Republic is considering monetary union entry
- Behavior of economy after the announcement of switch toward unilateral peg
- How aggressive will be the response of interest rates to shocks?
- Macroeconomic stability in small open economy environment: Collard & Dellas (2002)
 - variance of series
 - evolution of variance
- Modeling a monetary regime change in DSGE model
- Farmer, Waggoner and Zha (2007): Recent works rely on Markov switching processes

Presentation outline

- Introduction
- 2 Model

Simulation results

Model I

Justiniano and Preston (2004) framework:

- Two countries:
 - ► Home small economy
 - Foreign large economy (monetary union)
- Model features:
 - No capital
 - ► All goods are tradable
 - Complete markets: Symmetric equilibrium
 - Nominal rigidities: Monopolistically competitive firms
 - ★ Inflation indexation
 - ⋆ Domestic producers
 - ★ Importers: Law of one price gap

Model II

- Domestic monetary policy rules:
 - Pre-transition:
 Targeting of inflation, output gap or change in nominal exchange rate
 - Transition:
 Follow pre-transition rule with knowledge of regime switch
 - Post-transition:
 Rule of offsetting changes in the nominal exchange rate

Monetary policy rules

Generalization of monetary regimes:

• Pre-transition regime:

$$i_t^I = \rho_i i_{t-1} + (1 - \rho_i)(\rho_\pi \pi_t^{CPI} + \rho_y y_t + \rho_e \Delta e_t)$$

• Post-transition regime:

$$i_t^U = \rho_i^U \Delta e_t$$

Transition regime:

$$i_t^T = \textit{regime}_t \; i_t^I + (1 - \textit{regime}_t) \; i_t^U, \, \text{where} \; \textit{regime}_t \in \{0, 1\}$$

Information buffer

Regime indicator:

$$regime_{t} = inf_{t,1}$$

$$inf_{t,1} = \rho_{inf} inf_{t,2} + \nu_{t,1}$$

$$inf_{t,2} = \rho_{inf} inf_{t,3} + \nu_{t,2}$$

$$\vdots$$

$$inf_{t,N-1} = \rho_{inf} inf_{t,N} + \nu_{t,N-1}$$

$$inf_{t,N} = \nu_{t,N},$$

$$(2)$$

where $u_{t,i}, i \in 1, \dots, N-1$ are information shocks and $0 < \rho_{inf} < 1$

- Future information is added to the state space
- Agents foresee the future changes of monetary regime

Solution

- Solve model:
 - Second order approximation of the monetary policy rule
 - ► Dynare++: fast solver for large problems
- Estimate model
 - Dynare
- Evaluate information shocks and simulate

Estimation

- Bayesian estimation method: Dynare
- Testing properties of the model:
 - Sample moments vs. model moments
 - Evaluate impulse response functions
 - Prior vs. Posterior distributions

Moments comparison

	Data		Model	
Variable	Std. dev.	Corr.	Std. dev.	Corr.
Output growth	1.05	1.00	3.04	1.00
Nominal interest rate	1.38	-0.53	1.84	-0.26
CPI inflation	3.14	-0.12	4.02	-0.15
Change in nominal ex. rate	8.37	0.17	8.54	0.02
Real ex. rate	3.48	0.17	6.79	-0.03
Foreign output gap	0.81	0.02	0.67	0.00
Foreign inflation	0.66	0.21	0.76	-0.01
Foreign nom int rate	0.65	-0.03	0.60	0.00

Presentation outline

Introduction

2 Model

3 Simulation results

Irf: Technology shock

Irf: Preference shock

Transition period: Welfare evolution

Welfare evaluation:

• Santacreu (2005):

$$L_t = au extstyle Var(\pi_t) + (1- au) extstyle Var(y_t) + rac{ au}{4} (\Delta extstyle i_t),$$

where $\tau \in <0,1>$

• Gali & Monacelli (2005):

$$L_t = rac{arepsilon}{\lambda} extsf{Var}ig(\pi_tig) + ig(1+\phiig) extsf{Var}ig(y_tig),$$

where $\lambda = (1-\theta)(1-\beta\theta)/\theta$ and ϕ are parameters of the underlying model

 Terms of trade: Gali & Monacelli (2005) show that the higher the terms of trade volatility ⇒ the lower the volatility of inflation and output gap

Loss function: Sancrateu (2005), $\tau = 0$

Loss function: Sancrateu (2005), $\tau = 0.8$

Loss function: Gali & Monacelli (2005)

Terms of trade variance: Difference from SIT regime

Conclusion

Goals:

- Alternative approach to modeling of regime switch is presented
- Evolution of macroeconomic stability
- Strict inflation targeting regimes are preferred

Future research:

- Extended model
- Synchronization of business cycles

