CERGE-EI Course: Macroeconomics III Term: Summer 2007 Instructor: Michal Kejak TA: Katarína Kotovová

> Exercise Session 8 July 11, 2007

Problem 1. Romer's model with modified production function in R & D.¹

Consider Romer (1990) version of the model with a variety of producer products, with the production function for firm i given by

$$Y_i = L_{Y,i}^{\beta} \sum_{j=1}^{A} X_{ij}^{1-\beta}$$

where $0 < \beta < 1$, Y_i is output, $L_{Y,i}$ is labor input, and X_{ij} is the employment of the *j*th type of specialized intermediate (nondurable) output.

- 1. Derive the final good's sector demand for labor and intermediate goods as a function of the prices w and P_i .
- 2. We assume that the inventor of good j retains a perpetual monopoly right over the production and sale of the good, X_j . As in class, one unit of final good combined with a design can be transformed into one unit of intermediate good. Solve the profit maximization problem for an intermediate goods firm that owns a patent and show that all intermediate goods sell for the same price. What is the instantaneous profit π earned by an I-firm as a function of labor used in the final-good sector?
- 3. Assume that the production function in R&D sector for discovering new ideas is more general than we had in class: the quantity of labor necessary to invent a new product is

$$\hat{\eta} = \frac{\eta}{L_R^{\lambda - 1} A^{\epsilon}}$$

capturing the externality effects of the stock of ideas A, and the total labor searching for new ideas L_R . Assume that $\epsilon < 1$ and $0 < \lambda < 1$. Assume further that the population L grows at rate $n = \frac{\dot{L}}{L}$.

(a) Explain the meaning of $\dot{A} = \frac{L_R}{\hat{\eta}}$ and interpret the meaning of $\hat{\eta}$. Using the above general production function specify the rate of technological change $\frac{\dot{A}}{A}$ as a function of the labor used in R&D sector and of the level of technology. Derive the expression for the rate of technological change along the balanced growth path (BGP). Is this model a true endogenous growth model? Why or why not? [Hint: Use the fact that along BGP $(\frac{\dot{L}_R}{L_R})^* = n$.]

 $^{^1\}mathrm{This}$ problem is taken from Macro II final exam, 2006.

- (b) Write down the formula for the present discounted value of a blueprint for an Igood V(t). Show that it implies the arbitrage condition $r = \frac{\pi(t)}{V(t)} + \frac{\dot{V}(t)}{V(t)}$. Explain the meaning of the arbitrage condition. Prove that the profit grows at rate $\frac{\dot{\pi}(t)}{\pi(t)} =$ n. Using this and the arbitrage condition along a BGP derive the expression for the present value $V^*(t)$ along the BGP.
- (c) Explain the meaning of free entry in R&D sector. Write down the expression which captures free entry into R&D sector for this economy.
- (d) Assume that the household divides his unit of time endowment between the working time into R&D, l_R , and the working time in the final goods sector, l_Y . So $l_R + l_Y = 1$ and the aggregate labor in the R&D and the final good sector are $L_R = l_R L$ and $L_Y = l_Y L$, respectively. Write down the household problem for this economy. What are the state and control variables for this problem?
- (e) Explain in words the nature of all market failures (inefficiencies) that emerge from the decentralized model.
- (f) Write down the social planner problem for this economy under the condition that social planner assumes that I-good enters the production for the final goods symmetrically. What are the state and control variables for this problem?